Breast Cancer Detection Using EfficientNetV2 Variants and Data Augmentation: A Comparative Study
DOI:
https://doi.org/10.23960/komputasi.v13i1.281Keywords:
Deteksi Dini, EfficientNetV2, Kanker Payudara, Citra MedisAbstract
Kanker merupakan penyebab utama kematian kedua di dunia yang menyebabkan sekitar 9,6 juta kematian. Deteksi dini kanker dan penanganannya sedini mungkin dapat menurunkan angka kematian. Metode deep learning terbukti mampu mengenali pola dalam citra medis dan memberikan hasil klasifikasi yang akurat, EfficientNet merupakan salah satu metode deep learning. Penelitian ini bertujuan untuk mengeksplorasi penggunaan berbagai varian EfficientNetV2, yaitu EfficientNetV2-S, EfficientNetV2-M, dan EfficientNetV2-L untuk mendeteksi kanker payudara berdasarkan citra medis. Dataset yang digunakan yakni gambar USG wanita berusia antara 25 dan 75 tahun sebanyak 600 wanita, dengan total 780 gambar USG yang memiliki ukuran rata- rata 500×500 piksel dalam format PNG. Setiap gambar dalam dataset ini diklasifikasikan ke dalam tiga label yaitu normal, jinak (benign), dan ganas (malignant). Penelitian ini mendapatkan hasil akurasi terbaik pada model EfficientNetV2-L dibandingkan model EfficientNetV2-S dan EfficientNetV2-M. Nilai akurasi pelatihan yang didapatkan sebesar 89% dan nilai akurasi validasi sebesar 86% dengan nilai loss pelatihan sebesar 0.30 dan nilai loss validasi sebesar 0.37. Berdasarkan hasil tersebut, penelitian ini memiliki potensi sebagai solusi pendukung keputusan medis yang efisien dalam praktik klinis sehari-hari untuk deteksi dini kanker payudara.
Downloads
References
Organisasi Kesehatan Dunia (World Health Organization), “Cancer,” Organisasi Kesehatan Dunia (World Health Organization). [Daring]. Tersedia pada: https://www.who.int/health- topics/cancer#tab=tab_1
Sehat Negeriku, “Kanker Payudara Paling Banyak di Indonesia, Kemenkes Targetkan Pemerataan Layanan Kesehatan,” /sehatnegeriku.kemkes.go.id. Diakses: 5 Maret 2025. [Daring]. Tersedia pada: https://sehatnegeriku.kemkes.go.id/baca/umum/20220202/1639254/kanker-payudaya- paling-banyak-di-indonesia-kemenkes-targetkan-pemerataan-layanan-kesehatan/
S. P. K. Malhotra, “MEDICAL IMAGING IN THE DETECTION OF CANCER,” 2020. [Daring].
Tersedia pada: https://api.semanticscholar.org/CorpusID:235261125
X. Jiang, Z. Hu, S. Wang, dan Y. Zhang, “Deep learning for medical image-based cancer
diagnosis,” Cancers, vol. 15, no. 14, hlm. 3608, 2023.
S. Maurya, S. Tiwari, M. C. Mothukuri, C. M. Tangeda, R. N. S. Nandigam, dan D. C. Addagiri, “A review on recent developments in cancer detection using Machine Learning and Deep Learning models,” Biomedical Signal Processing and Control, vol. 80, hlm. 104398, Feb 2023, doi: 10.1016/j.bspc.2022.104398.
T. Saba, “Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges,” Journal of Infection and Public Health, vol. 13, no. 9, hlm. 1274–1289, Sep 2020, doi: 10.1016/j.jiph.2020.06.033.
U. R. P. Nasution, R. Rahmat, T. Munthe, M. Elveny, R. Nurhasanah, dan T. Lini, “Skin cancer image classification based on cancer malignancy on deep convolutional neural network (DCNN),” Jan 2024, hlm. 020017. doi: 10.1063/5.0200113.
T. Sood, R. Bhatia, dan P. Khandnor, “Cancer Detection Based on Medical Image Analysis with the Help of Machine Learning and Deep Learning Techniques: A Systematic Literature Review,” Current Medical Imaging Reviews, vol. 19, no. 13, hlm. 1487–1522, 2023.
A. R. M. Al-shamasneh dan U. H. B. Obaidellah, “Artificial Intelligence Techniques for Cancer Detection and Classification: Review Study,” ESJ, vol. 13, no. 3, Jan 2017, doi: 10.19044/esj.2016.v13n3p342.
I. Ahmad dan F. Alqurashi, “Early cancer detection using deep learning and medical imaging: A survey,” Critical Reviews in Oncology/Hematology, vol. 204, hlm. 104528, Des 2024, doi: 10.1016/j.critrevonc.2024.104528.
F. Y. Shih dan J. S. Tse, “Medical Image Processing Technology for Diagnosing and Treating Cancers,” Recent Patents on Biomedical Engineering (Discontinued), vol. 2, no. 2, hlm. 141–147, 2009.
R. Jalloul, H. Chethan, dan R. Alkhatib, “A review of machine learning techniques for the classification and detection of breast cancer from medical images,” Diagnostics, vol. 13, no. 14, hlm. 2460, 2023.
Y. Lu, J.-Y. Li, Y.-T. Su, dan A.-A. Liu, “A review of breast cancer detection in medical images,”
IEEE Visual Communications and Image Processing (VCIP), hlm. 1–4, 2018.
M. Tan dan Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,”
dipresentasikan pada International conference on machine learning, PMLR, 2019, hlm. 6105–6114.
A. Wongpanich dkk., “Training EfficientNets at supercomputer scale: 83% ImageNet top-1
accuracy in one hour,” dipresentasikan pada 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), IEEE, 2021, hlm. 947–950.
C.-C. Wang, C.-T. Chiu, dan J.-Y. Chang, “Efficientnet-elite: Extremely lightweight and efficient cnn models for edge devices by network candidate search,” Journal of Signal Processing Systems, vol. 95, no. 5, hlm. 657–669, 2023.
M. Tan dan Q. Le, “Efficientnetv2: Smaller models and faster training,” dipresentasikan pada I
nternational conference on machine learning, PMLR, 2021, hlm. 10096–10106.
J. Rengel, M. Santos, dan R. Pandit, “EfficientNet architecture family analysis on railway track defects,” dipresentasikan pada International Conference on Intelligent Data Engineering and Automated Learning, Springer, 2022, hlm. 474–481.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Komputasi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.